Page 1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-030647r1

Meeting #25, Bangkok, THAILAND, 27 - 31 October 2003

	CR-Form-v7

	CHANGE REQUEST

	

	(

	29.198-13
	CR
	CRNum
	(

rev
	-
	(

Current version:
	6.0.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	
	Radio Access Network
	
	Core Network
	x

	

	Title:
(

	Correction of standard datatypes supported by TpPolicy - Alignment with 29.198-02

	
	

	Source:
(

	John-Luc Bakker (Telcordia, jlbakker@research.telcordia.com)

Shehryar Qutub (Lucent, squtub@lucent.com)

	
	

	Work item code:
(

	OSA2
	
	Date: (

	12/11/2003

	
	
	
	
	

	Category:
(

	A
	
	Release: (

	REL-6

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)

	
	

	Reason for change:
(

	TpPolicyAtomicType is a copy of TpAttributeType, adding P_BOOLEAN. A companion CR adds P_BOOLEAN to TpAttributeType. In order to prevent increasing the number of types in OSA common types have been defined. This CR proposes to use common type TpAttributeType rather than a custom copy for reasons of clarity to application developers, flexibility and ease of maintenance.

Additionally, the type TpPolicyAtomicType does not allow customization through the SP_ rule. Hence, the current definition of TpPolicyAtomicType was found to restrictive and to implementation specific.

	
	

	Summary of change:
(

	TpAttributeType is extended with the CORBA standard primitive types, CORBA complex types, and an XML datatype, allowing any IDL or XML-expressable and verifiable datatype to be passed, including Boolean, Digit and Date. TpPolicyAtomicType only allows 4 types.

	
	

	Consequences if
(

not approved:
	Limited applicability of the Policy Management API; Policy Management API cannot manage, e.g., currency amount based policies such that such policies are portable. Policy typing system not rigourously defined.

	
	

	Clauses affected:
(

	5.2-3, 5.5, 8.1.12.1, 8.1.14.1, 10, 11.2.3, 11.2.6-7, 11.3.1-2, 11.3.6, 11.4-5

	
	

	
	Y
	N
	
	

	Other specs
(

	
	x
	 Other core specifications
(

	

	affected:
	
	x
	 Test specifications
	

	
	
	x
	 O&M Specifications
	

	
	

	Other comments:
(

	Rel-6 Mirror CR of N5-030648

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

KEEP the History box of the TS to be changed (see end of the present document)

5.2 Introduce condition and action into rule

This sequence diagram describes how a specific policy rule is managed. A rule consists generally of conditions and of actions, the latter being evaluated if all conditions evaluate to true.

This sequence includes:

- creation of a condition and introduction of it into the rule;

- retrieval of an already defined action object from a repository and introduction into the rule;

- establishing a transaction bracket.

Presumption: the Application got a reference to the group, e.g. by having performed the sequence "create and modify domain" as in clause 5.4.

[image: image1.wmf] : (Logical

View::Application)

 :

IpPolicyGroup

 : IpPolicyRule

 :

IpPolicyManager

 :

IpPolicyRepository

2: createRule()

5: createCondition()

7: getRepository()

8: getAction()

10: setActionList()

11: setConditionList()

1: startTransaction()

3: commitTransaction()

4: startTransaction()

6: commitTransaction()

9: startTransaction()

12: commitTransaction()

1:
Opens the transaction bracket.

2:
creates a rule object in the group by passing the name as parameter. The method returns the reference to the new rule object.

3:
Closes the transaction bracket.

4:
Opens the transaction bracket.

5:
After having created the rule object one can "fill" it with actions and conditions. Here a condition is created on the rule object, thus becoming a part of the rule. Conditions defined in such a way cannot be reused in other rules. For this the repository approach should be used.

Parameters passed are the condition name and the condition type.

Returns a reference to this condition object.

Note that: the type of condition object that is to be created must be one of those specified in TpPolicyConditionType, section 11.1.4.

The method createCondition() is used to create a new instance of a condition type in the repository or rule. This method passes the name of the condition, the type of the condition and an approriate set of attribute-value pairs. Note that it is necessary to include, within the conditionAttributes argument of createCondition(), all those attribute-value pairs that are not inherited from IpPolicyCondition - if the inherited attribute-value pairs are included in this argument then their assigned values will override the values assigned prior to this assignment. Thus, for example, if the new condition type to be created is TpPolicyExpressionCondition, then the attribute named "Expression" and its value must be included in conditionAttributes (also see section 8.1.12). Note that this call may throw an exception if the value of "Expression" is not parsable.

The steps to create an action object instance are similar to those taken to create a condition object instance. We use the method createAction() to create a new action instance. Note that an action object must be one of those specified in TpPolicyActionType, section 11.1.7. It is necessary to include all the attribute-value pairs that are not inherited from IpPolicyAction, in the actionAttributes argument of createAction() .

6:
Closes the transaction bracket.

7:
Now we're using the repository approach, i.e. reusable condition or action objects. In this example we reuse an action.

For that purpose we ask at the IpPolicyManager interface for a reference to a named repository.

The repository name is passed.

Returns the reference to the repository.

8:
If we know already the name of the action object one retrieves the action directly by passing the name as parameter. Otherwise one has to retrieve the name first by using an action iterator.

Returns a reference to the action object.

9:
Opens the transaction bracket.

10:
Now, the action(s) must be assigned to the rule. Furthermore and different to the conditions, one has to assign an ordering number to the action.

Passed parameter is the action list, which is a list of action reference/ sequence pairs.

11:
After having created or retrieved all needed conditions they must be assigned to the rule. This is done by passing the list of condition to that method.

This is explicitly done by passing TpPolicyConditionList again consisting of TpPolicyConditionListElements which contains the reference the IpPolicyRule object created with message 2.

If the rule is active, this will then cause the expression defined in the condition to be evaluated (as often as necessary). Note that the binding between the variables referenced in the expression and the instances of the variable available is done each time the expression is evaluated. That is, when evaluating a variable reference, each enclosing domain is searched in order (from closest to farthest) for a matching variable. If one is found, it is used. If no matching variable is set, the expression condition fails (evaluates to FALSE).

Activation of actions is done similarly.

12:
Closes the transaction bracket.

5.3 Create event

This sequence shows how policy events are used.

For clarification we list the different policy related objects used:

- IpPolicyEventDefinition: The "template" used to define allowable events. The template is used to define formally a distinct type of rule condition and rule action, namely, IpPolicyEventCondition and IpPolicyEventAction.

- IpPolicyEventCondition: A special instance of a policy condition used in a rule. The condition evaluates to "True" on the occurrence of the event instance that is formally associated with it.- IpPolicyEventAction: A special instance of a policy action used in a rule. The action results in the generation of an instance of the formal event associated with it.

- TpPolicyEvent: This data type is passed as a parameter in the formal notification (to a client) of the occurrence of an instance of an event.

Presumption: the reference to a rule has been somehow retrieved.

[image: image2.wmf] : (Logical

View::Application)

 : IpPolicyRule

 : (Logical

View::PolicyEng...

 :

IpPolicyManager

 :

IpPolicyEventDefinition

 :

IpPolicyDomain

 :

IpAppPolicyDomain

7: createAction()

2: createEventDefinition()

3: setRequiredAttributes()

4: setOptionalAttributes()

5: createCondition()

6: setValidityPeriodCondition()

8: setActionList()

1: startTransaction()

9: commitTransaction()

1:
All changes of policy objects must be performed in a transaction bracket. This method opens the bracket.

2:
This method creates a new event type. Event definitions describe the attributes of a specific event class, which can than be instantiated as policy condition or policy event. Returns the reference to the newly created EventDefinition instance which then can be modified according to ones needs.

3:
Now, after having created a new instance of a policy event definition, one can set the required attributes by passing the respective attribute set ...

4:
... and the optional attributes. Such attributes may be (...).

5:
This createCondition() method creates locally an instance of PolicyTimePeriodCondition defining the validity period of this rule.

Returns a reference to the new instance of IpPolicyTimePeriodCondition object.

Using createCondition() assign the appropriate values to relevant attributes of this new instance of IpPolicyTimePeriodCondition. For example,

TpAttribute.AttributeName = "TimePeriod"

TpAttribute.AttributeValue.SimpleValue.StringValue = "20000101T080000/20000131T120000"

the latter indicating the time period "January 1, 2000, 0800 through January 31, 2000, noon".

6:
Using the reference got with createCondition() the validity period is set to rule. Before this created condition will not become valid.

7:
The assignment of a policy event is made as for other actions. The difference is the action type passed as parameter: it MUST be of type IpPolicyEventAction.

Passed parameters are the name of the created action, the action type and the attributes of the action; one of these attributes refers by name to the event definition as created before in this sequence.

Returns the reference to the newly created action object.

8:
This method activates the action (here the action event) for this rule. After creation this action is not yet active.

The name of the action object is passed.

9:
This closes the transaction bracket.

5.5 ASP offering services to prepaid subscribers

The example shown here is based on an Application Service Provider (ASP) offering services to the prepaid subscribers of a certain Network Operator. The ASP discovers that, as part of the business logic of the applications it offers, the prepaid credit of the subscriber needs to be verified with regards to the current charge for the service in order to determine whether the purchase should be allowed or not. Rather than including this credit check in the business logic of each and every application that the ASP has in its service portfolio, the ASP may decide to enable a Policy Rule to be hosted in the Policy Engine of the Network Operator.

[image: image3.wmf]AppLogic

 : IpPolicyManager

 : IpPolicyDomain

 : IpPolicyGroup

 : IpPolicyRule

 : IpPolicyExpressionCondition

 : IpPolicyExpressionAction

1: startTransaction()

2: createDomain()

3: new()

4: createGroup()

5: new()

6: createRule()

7: new()

8: createCondition()

9: new()

10: createAction()

11: new()

12: setConditionList()

13: setActionList()

14: commitTransaction()

1:
For the sake of this example, all activities to create a Domain, a Group, and the Rule are contained within a single transaction. The method startTransaction is used by the application to open the transaction.

2:
The rule in this simplistic example is part of a single group, which in turn is contained within a single domain. The application creates that domain by invoking the method createDomain. The value of the parameter domainName is "eCommerceDomain".

3:
As a result of the createDomain method a new instance of the IpPolicyDomain interface is created. Its interface reference is returned as return parameter of the createDomain method.

4:
Once the domain is created a group is created within that domain. The application invokes the createGroup method, where the parameter groupName has value "PrePaidGroup".

5:
As a result of the createGroup method a new instance of the IpPolicyGroup interface is created. Its interface reference is returned as return parameter of the createGroup method.

6:
At this point in time there exists the "PrePaidGroup" group within the "eCommerceDomain" domain. The actual rule can be created, using the method createRule. The parameter ruleName has value "SufficientCreditRule". The new rule SufficientCreditRule has the following attributes:

-
Enabled == TRUE; the policy rule is currently enabled.

-
RuleUsage == NULL; no free-format usage recommendation is provided.

-
Priority == 0; default value, as there is only one rule.

-
Mandatory == TRUE; mandatory rule, evaluation of the expression must be attempted

-
PolicyRoles == PrePaidBalanceCheck. Each rule must be assigned a policy role(s).

-
ConditionListType == P_PM_DNF; disjunctive normal form (DNF)

-
SequencedActions == 3; do not care, as there is only one rule.

7:
A new instance of the IpPolicyRule interface is created. createRule returns the reference to this newly created interface.

8:
Once an instance of IpPolicyRule exists, the actual policy rule can be constructed by means of conditions and actions. Invoking the method createCondition creates the condition. The parameter conditionName has value "SufficientCredit". The parameter conditionType has value "P_PM_EXPRESSION_CONDITION", to indicate that the condition must satisfy certain expressional syntax. The parameter conditionAttributes is a set of structures. For this example the set contains of only one attribute structure.

-
ConditionAttribute.AttributeName = "SufficientCreditExpression"

-
ConditionAttribute.AttributeValue.SimpleValue.StringValue = "PrePaidCredit > CurrentCharge"

Note that the variables "PrePaidCredit" and "CurrentCharge" in the expression of AttributeValue are assumed to be defined a priori. The value of the expression is derived from the core grammar expressed in the PM information model.

9:
A new instance of the IpPolicyExpressionCondition interface is created.

10:
The construction of the rule is completed by creating the action that is to be performed when the condition expression evaluates to TRUE. The parameter actionName has value "PurchaseAllowed". The parameter actionType has value "P_PM_EXPRESSION_ACTION" to indicate that the action must satisfy certain expressional syntax. The actionAttributes are again a set containing of only one structure.

-
ActionAttribute.AttributeName = "PurchaseAllowedExpression"

-
ActionAttribute.AttributeValue.SimpleValue.StringValue = "AllowedPurchase == TRUE".

11:
A new instance of the IpPolicyExpressionAction interface is created.

12:
The attributes for the condition are set by invoking the method setConditionList. The conditionList is a list consisting of one structure:

-
conditionList.Condition == <reference to the IpPolicyCondition interface returned by 9>

-
conditionList.GroupNumber == 1; indicates how the conditions need to be grouped in DNF or CNF in case more groups of rules exist.

-
conditionList.Negated == FALSE.

13:
The attributes for the action are set by invoking the method setActionList. The actionList is a list consisting of only one structure:

-
actionList.Action == <reference to the IpPolicyAction interface returned by step 10>

-
actionList.SequenceNumber == 1;

14:
The "SufficientCreditRule" now exists in the "PrePaidGroup" of the "eCommerceDomain" and is assigned the policy role of PrePaidBalanceCheck. The rules is as follows:

IF " PrePaidCredit > CurrentCharge " THEN "AllowedPurchase == TRUE". This policy rule is enabled upon creation and it is mandatory for the policy engine to load this rule (and any other within the PrePaidGroup with policy role of PrePaidBalanceCheck) upon an evaluation request and then evaluate it.

The class IpPolicyDomain is defined as a generalized aggregation container, enabling PolicyDomains, PolicyGroups, and PolicyRules to be aggregated in a single container. The following figure shows how this container looks for the example.

 +---+

 |PolicyDomain "eCommerceDomain" |

 | |

 | +---+ |

 | |PolicyGroup "PrePaidGroup" | |

 | | | |

 | | +--+ | |

 | | |PolicyRule "SufficientCreditRule" | | |

 | | | | | |

 | | | +-------------------+ +-------------------+ | | |

 | | | |PolicyCondition | |PolicyAction | | | |

 | | | | "SufficientCredit"| | "PurchaseAllowed" | | | |

 | | | +-------------------+ +-------------------+ | | |

 | | +--+ | |

 | +---+ |

 +---+

8.1.12.1 Attributes

CommonName : TpString

The identifier used to distinguish instances of a give class of objects within a container. It is defined and referenced by the 'name' parameter used in most API methods.

PolicyKeywords : TpStringSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy objects.

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering", "Billing", and "Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN", "P_PM_KEYWORD_CONFIGURATION", "P_PM_KEYWORD_USAGE", "P_PM_KEYWORD_SECURITY", "P_PM_KEYWORD_SERVICE", "P_PM_KEYWORD_MOTIVATIONAL", "P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined in IETF RFC 3460.

One additional keyword is defined: "P_PM_KEYWORD_POLICY". The role of this keyword is to identify policy-related instances that would not otherwise be identifiable as being related to policy. It may be needed in some repository implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString

This attribute provides a one-line description of a policy-related object.

Description : TpString

This attribute provides a longer description than that provided by the caption attribute.

Expression : TpString

The expression to be evaluated as the condition. In case this SCF supports both eBNF and XML, then the TpAttributeTagInfo of the TpAttribute that populated this expression is used to distinguish between XML and eBNF string contents. A TpAttributeTagInfo value of P_XML_TYPE indicates XML as contents of the Expression attribute and a TpAttributeTagInfo value of P_SIMPLE_TYPE indicates eBNF as contents of Expression attribute. The eBNF definition can be found in Section 11.3.
8.1.14.1 Attributes

CommonName : TpString

The identifier used to distinguish instances of a give class of objects within a container. It is defined and referenced by the 'name' parameter used in most API methods.

PolicyKeywords : TpStringSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy objects.

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering", "Billing", and "Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN", "P_PM_KEYWORD_CONFIGURATION", "P_PM_KEYWORD_USAGE", "P_PM_KEYWORD_SECURITY", "P_PM_KEYWORD_SERVICE", "P_PM_KEYWORD_MOTIVATIONAL", "P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined in IETF RFC 3460.

One additional keyword is defined: "P_PM_KEYWORD_POLICY". The role of this keyword is to identify policy-related instances that would not otherwise be identifiable as being related to policy. It may be needed in some repository implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString

This attribute provides a one-line description of a policy-related object.

Description : TpString

This attribute provides a longer description than that provided by the caption attribute.

Expression : TpString

The expression that should evaluated. In case this SCF supports both eBNF and XML, then the TpAttributeTagInfo of the TpAttribute that populated this expression is used to distinguish between XML and eBNF string contents. A TpAttributeTagInfo value of P_XML_TYPE indicates XML as contents of the Expression attribute and a TpAttributeTagInfo value of P_SIMPLE_TYPE indicates eBNF as contents of Expression attribute. The eBNF definition can be found in Section 11.3.

10 PM Service Properties

The following table lists properties relevant to all the PM SCFs

	Property
	Type
	Description

	P_SUPPORTED_ATTRIBUTE_TAGS
	STRING_SET
	Lists the supported attribute tags defined by TpAttributeTagInfo

	P_SUPPORTED_VARIABLE_TAGS
	STRING_SET
	Lists the supported variable tags defined by TpPolicyTypeInfo

	P_SUPPORTED_SIMPLE_ATTRIBUTE_TYPES
	STRING_SET
	Lists the supported attribute types defined by TpSimpleAttributeTypeInfo

	P_SUPPORTED_SIMPLE_VARIABLE_TYPES
	STRING_SET
	Lists the supported variable types defined by TpSimpleAttributeTypeInfo

	P_SUPPORTED_STRUCTURED_ATTRIBUTE_TYPES
	STRING_SET
	Lists the supported attribute types defined by TpStructuredAttributeType, e.g. P_org/csapi/TpAddress.

	P_SUPPORTED_STRUCTURED_VARIABLE_TYPES
	STRING_SET
	Lists the supported variable types defined by TpStructuredAttributeType, e.g. P_org/csapi/TpAddress.

	P_SUPPORTED_XML
	STRING_SET
	Lists the supported versions of XML specifications such as XML schema specifications (e.g. through URLs), XML versions (e.g. version 1.0) or XPath (e.g. version 1.0)

Implementations of the PM APIs shall have the Service Properties set to the indicated values at a minimum:

P_SUPPORTED_ATTRIBUTE_TAGS = {

P_SIMPLE_TYPE

}

P_SUPPORTED_SIMPLE_ATTRIBUTE_TYPES = {

P_STRING,

P_FLOAT,

P_INT32,

P_BOOLEAN

}

P_SUPPORTED_VARIABLE_TAGS = {

P_SIMPLE_TYPE

P_PM_TYPE_RECORD,

P_PM_TYPE_LIST

}

P_SUPPORTED_SIMPLE_VARIABLE_TYPES = {

P_STRING,

P_FLOAT,

P_INT32,

P_BOOLEAN

}

11.2.3

	
	

	
	

	
	

	
	

	
	

	
	

11.2.6 TpPolicyTypeInfo

TpPolicyTypeInfo is an enumerated type used as a discriminator for the TpPolicyType structure, and can contain the following values:

	Name
	Value
	Description

	P_SIMPLE_TYPE
	0
	Simple type

	
	
	

	P_PM_TYPE_RECORD
	1
	Record type

	P_PM_TYPE_LIST
	2
	List type

	P_STRUCTURED_TYPE
	3
	Structured type

	P_XML_TYPE
	4
	XML type

11.2.7 TpPolicyType

This is a Tagged Choice of Data Elements with a TpPolicyTypeInfo discriminator, and can be one of the following:

	
	Tag Element Type
	

	
	TpPolicyTypeInfo
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_SIMPLE_TYPE
	TpSimpleAttributeType
	SimpleType

	P_PM_TYPE_RECORD
	TpPolicyRecordType
	RecordType

	P_PM_TYPE_LIST
	TpPolicyListType
	ListType

	P_STRUCTURED_TYPE
	TpStructuredAttributeType
	StructuredType

	P_XML_TYPE
	TpXMLString
	XMLString

TpPolicyType allows us to define arbitrarily nested complex types as shown below. The level of nested data types actually supported is implementation specific.

The choice elements represent the following:

SimpleType:
Defines an atomic type.

RecordType:
Defines a record type with named fields.

ListType:
Defines a homogeneous list type. Heterogeneous lists are not supported.
StructuredType
Defines an object of the specified, fully qualified class

XMLString
Defines a data type that contains well-formed XML.

11.3.1 Basic Definition

We define some basic tokens that are used in the rest of the eBNF. The “…” used below indicate a range of corresponding characters. For example, the “…” in letter corresponds to all letters between b and z, both lower and uppercase). Similarly, the “…” in char corresponds to printable characters.

digit

::= "0" | "1" | ... | "9";

letter

::= "a" | "b" | ... | "z" | "A" | "B" | ... | "Z";

alphanumeric

::= digit | letter;

char

::= alphanumeric | "\"" | "\'" | "." | "+" | ...;

identifier

::= letter {[alphanumeric | "_"]}*;

Note 1: For a complete definition of the char type, see Sections 3.10.1.3 and 3.10.1.4 of the CORBA 2.4.2 Architecture and Specification document dated Feb 2001.

Note 2: The variable name syntax must conform to the eBNF specified by the identifier non-terminal above.

11.3.2 Definitions of Constant (Literals)

The following define the basic literals allowed. Examples include boolean literals (true and false), character literals (e.g., ‘x’, ‘a’), string literals (e.g., “Parlay”, “CORBA”), integer constants (e.g., -4, +23, 45, 05), float constants (e.g., -2.3, 4., 5.6e-23). We also define a number to be either an integer or a float, and a const to be any of the these constant types.

bool_const

::= "true" | "false";

string_const

::= '"' {char}* '"';

int_const

::= {digit}+;

float_const

::= (({digit}* "." {digit}+)

 | ({digit}+ "." {digit}*))([eE][-+]?{digit}+)?
Note 1: For a complete definition of the char type, see Sections 3.10.1.3 and 3.10.1.4 of the CORBA 2.4.2 Architecture and Specification document dated Feb 2001.

number::=

 int_const

| float_const

;

const::=

 bool_const

| string_const

| number

;

11.3.6 Allowable Condition and Action Expressions

The following complete the definition of condition and action expressions. The condition expression corresponds exactly to the predicate mentioned above, while an action expression can be one of a simple assignment operation (=), or list append/delete operations (+= and -=). These specify the syntax of the Expression attribute in IpPolicyExpressionCondition and IpPolicyExpressionAction objects. Additional methods such as setConditionList() and setActionList() in IpPolicyRule interface need to be invoked in order to create a complete rule definition.

expr::=

 const

| arith_expr

| predicate

| "!" predicate

| predicate "&&" predicate

| predicate "||" predicate’

| "(" expr ")"

;

condition::= predicate;

action::= simple_var_access “=” expr

| identifier “+=” expr

| identifier “-=” expr

;

Examples of action expressions include:

i = j+k

can_insert = (! is_empty)

// the following appends element 5 to the end of a list of integers

L1 += 5

// the following deletes all occurances of element rec from the list

L2 -= rec

11.4 Example Scenarios

We now present a high-level scenario that illustrates how all the different extensions are tied together. The rulegroup that we will use contains only one rule, which uses two variables x, and y, which are of the type:

x: struct {

a: TpInt32;

b: TpFloat;

}

y: TpInt32;

Moreover, let us assume that there is onle one rulegroup (“testgroup”) associated with the domain we are considering, and the rulegroup contains only one rule of the form (it is easy to extend this scenario to the general case):

if (x.b < 3)

then

 y = x.a;

end

Finally, assume that the value of x is to be supplied for rule evaluation, and the value of y is to be returned back to the client. The steps that need to be performed are as follows given below (we will give psuedo-code for all the steps):). Note that the actual implementations (e.g., CORBA, Java etc.) corresponding to these may differ slightly from that presented below.

1) Provision variables:

// get the manager

IpPolicyManagerRef manager = …;

// start transaction

manager.startTransaction();

// get the domain

IpPolicyDomainRef domain = manager.getDomain(“testdomain”);

// create a variable set

domain.createVariableSet(“vset”);

// define the type of x

// note that we can use the int_type defined as part of this

// process, for the type of y as well

TpPolicyType int_type = TpPolicyType(TpSimpleAttributeTypeInfo(P_INT32));

TpPolicyType float_type = TpPolicyType(TpSimpleAttributeTypeInfo(P_FLOAT));

Vector<TpString> field_names = [“a”, “b”];

Vector<TpPolicyType> field_types = [int_type, float_type];

TpPolicyType x_type = TpPolicyType(TpRecordType(field_names,field_types));

// define the type of y

TpPolicyType y_type = TpPolicyType(TpSimpleAttributeTypeInfo(P_INT32));

// create the variables in the variable set

domain.createVariable(“vset”, “x”, x_type);

domain.createVariable(“vset”, “y”, y_type);

// set the values of x and y

TpAny x_value = {1, 2.5};

TpAny y_value = 3;

domain.setVariableValue(“vset”, “x”, x_value);

domain.setVariableValue(“vset”, “y”, y_value);

2) Create signature:

IpPolicySignatureRef sig = domain.createSignature(“test_sig”);

// set input and output variables

TpStringSet input_vars = [“x”];

TpStringSet output_vars = [“y”];

sig.setInputVariables(input_vars);

sig.setOutputVariables(output_vars);

// set groups and roles

TpStringSet groups = [“testgroup”];

TpStringSet roles = []; // no roles specified

sig.setGroupNames(groups);

sig.setRoleNames(roles);

3) Provision the rules:
The given rule is provisioned with the rulegroup. The variable declarations provisioned in (1) of the parent domain of the rulegroup need to be utilized to verify that the rule being provisioned is valid. For example, the condition (x.b < 3) can be verified as being valid, since “x” has a record type, and has “b” as a field, and “x.b” is a TpFloat. As an example, if the type of “x.b” had been TpString, then during provisioning, the rule condition would have been determined to be as invalid, and an exception thrown. The steps for creating the group are not shown in this example.

// commit transaction

manager.commitTransaction();

4) Sending a decision request:
The first three steps happen during provisioning time. In this step, we describe how the client may use the IpPolicyDomain.evalPolicy() method, as well as the notion of signatures, to request a decision to be rendered. We consider two scenarios: 1) where the value of x is explicitly specified by the client, and 2) where it is not.

· Case 1:

TpAny x_value = {4, 2.7};

TpPolicyNameValue x_name_val = {“x”, x_value};

TpPolicyNameValueList inputs = [x_name_value]; // input values

TpPolicyNameValueList outputs = domain.evalPolicy(“test_sig”, inputs);

Here, the explicit value of x overrides the value of x set via setVariableValue(). Hence, before rules are evaluated for this decision, the value of x is set to {4, 2.7}. The rule condition will then be true, and the value of z will be set to 4. Hence the outputs list will contain the value of y as being 4.

Note that if the value of x was specified as:

TpAny x_value = {4, 9.0};

The rule condition would not be true, which implies that the rule action would not be executed. However, the signature “sig_test” specified that y was an output variable and hence its value was to be sent back to the client. However (as mentioned earlier in our assumptions about variable semantics), y started out as being uninitialized, and hence an exception would be returned back to the client.

· Case 2:

TpPolicyNameValueList inputs = []; // input values

TpPolicyNameValue outputs = domain.evalPolicy(“test_sig”, inputs);

Here, the explicit value of x is not set. Hence the value of x set via setVariableValue() is used during rule evaluation, which implies that y will be set to to the value 1. As in the first case, the outputs list will contain one element, which would be the value of variable y.

11.5 Example XML Scenarios

We now present a high-level scenario that illustrates how the XML extensions are tied together. The rulegroup that we will use contains only one rule and is part of a domain named "testdomain". The rule is given below in a pseudo-language:

if (SIPAddress inDomain "parlay.org")

then

setCallLegProperty(P_CALL_LEG_PROPERTY_INFO,"http://www.parlay.org")

end

The example rule above invokes the operator "inDomain". We assume that this operation compares the domain part of an URI. It evaluates to "true" if the URI operand is part of a given domain. If the condition holds, the call leg property named P_CALL_LEG_PROPERTY_INFO will be set to "http://www.parlay.org ".

The action and condition part of this rule are expressed in pseudo XML below (i.e. namespaces are omitted, etc.). XML schema reference is not shown which would define XML structure, types and operations.
Action (to be passed in a ConditionAttribute.AttributeValue)

<condition operator="inDomain">

<operand>

<variable name="SIPAddress" type="anyURI"/>

</operand>

<operand>

<constant value="www.parlay.org" type="string"/>

</operand>

</condition>
Condition (to be passed in an ActionAttribute.AttributeValue)

<action>

<setCallLegProperty>

<callLegProperty value="P_CALL_LEG_PROPERTY_INFO" type="CallLegProperties"/>

<constant value="http://www.parlay.org" type=""string"/>

</setCallLegProperty>

</action>

Now, assume that the value of the variable with the name "SIPAddress" is to be supplied for rule evaluation, and the value of XML element is to be returned back to the client. The steps that need to be performed are as follows given below (we will give psuedo-code for all the steps):).

5) Provision variables:

// get the manager

IpPolicyManagerRef manager = …;

// start transaction

manager.startTransaction();

// get the domain

IpPolicyDomainRef domain = manager.getDomain(“testdomain”);

// create a variable set

domain.createVariableSet(“vset”);

// define the type of the variable named "SIPAddress"

TpPolicyType URI_type = TpPolicyType(TpStructuredAttributeTypeInfo("P_com/vendor/TpURI"));

// define the type of the action

TpPolicyType action_type = TpPolicyType(TpXMLString);

// create the variables in the variable set

domain.createVariable(“vset”, “SIPAddress”, URI_type);

domain.createVariable(“vset”, “setCallLegProperty”, action_type);

// set the values of x and y

TpAny URI_value = "sip:jdoe@parlay.org";

TpAny action_value = "<setCallLegProperty/>";

domain.setVariableValue(“vset”, “SIPAddress”, URI_value);

domain.setVariableValue(“vset”, “setCallLegProperty”, action_value);

6) Create signature:

IpPolicySignatureRef sig = domain.createSignature(“test_sig”);

// set input and output variables

TpStringSet input_vars = [“SIPAddress”];

TpStringSet output_vars = [“setCallLegProperty”];

sig.setInputVariables(input_vars);

sig.setOutputVariables(output_vars);

// set groups and roles

TpStringSet groups = [“testgroup”];

TpStringSet roles = []; // no roles specified

sig.setGroupNames(groups);

sig.setRoleNames(roles);

Provisioning and decision requests go much the same way as in steps 7 and further in Section 11.4.

Annex B (informative):
Change history

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	April 2002
	--
	--
	--
	--
	Draft v100 submitted to TSG CN email list for Information
	--
	1.0.0

	June 2002
	CN_16
	NP-020195
	--
	--
	Draft v200 submitted to TSG CN#16 for Approval
	2.0.0
	5.0.0

	Sep 2002
	CN_17
	NP-020439
	001
	--
	Add text to clarify requirements on support of methods
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020395
	002
	--
	Add text to clarify relationship between 3GPP and ETSI/Parlay OSA specifications
	5.0.0
	5.1.0

	Jun 2003
	CN_20
	NP-030250
	003
	--
	New Policy Evaluation SCF introduced
	5.1.0
	6.0.0

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least three digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/� .�The list is also included in a MS Excel file included in the zip file containing the CR cover sheet template.

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2002.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� This is an example of pop-up text.

CR page 1

